
Web Services and the Grid
LEE LIMING

Web services are not new
to the Grid community.
Research teams and some
product developers have
been developing and using
Web services in Grid
applications for several years
now. The emergence of Grid-
motivated standards—WSRF
and WS-I, for example—have
recently sped up the
adoption of Web services
technologies. The availability
of several WSRF
implementations in the
Globus Toolkit 4.0 and
related software
distributions has facilitated
this adoption. As clusters
become increasingly
essential elements of the
Grid's physical fabric, Web
services are becoming
essential elements of the
Grid's application
development toolset. Given
the importance of clusters
and Web services to Grids,
cluster owners and operators
need to understand the
implications of Web services
on the applications that run
on their clusters.

Why Web Services?
Web services are aimed at

making it easier to develop
and deploy distributed,
interoperable application
services. Like DCE, CORBA,
DCOM, Jini, and others
before them, Web service
technologies provide a
framework for developing
distributed applications that
run on the Internet. Unlike
its predecessors, the Web
services model appears to be
nearing the universal
acceptance required for it to
become a part of the
essential fabric out of which

the Internet and the Grid are
built. The Web services
movement is usually viewed
as a natural extension of the
Web movement that matured
in the early 1990s. The World
Wide Web, based on HTTP
and HTML, provides a very
simple but powerful
interface for sharing
information on the Internet.
It is very easy to set up and
maintain a Web server, and it
is very easy to use a Web
browser to access servers
anywhere on the Internet.
Now that the Web is
essentially ubiquitous to the
Internet, it has became a
platform on which all sorts
of information services—
both free and commercial—
can be built.

While fundamental to the
Web, HTTP and HTML are
very simple. They don't
address many of the
challenges of developing
sophisticated online services,
which means that different
services use different (and
incompatible) mechanisms to
do the same things. Web
services technologies—like
SOAP and WSDL—provide
more of the solutions to
these problems, so
applications based on Web
services do more things the
same way and are more
interoperable. The W3C and
OASIS standards
organizations are largely
focused on increasing the
interoperability between
services and applications on
the Web in much the same
way that the IETF has done
for the Internet.

This sounds very familiar
to members of the Grid
community, who have been

working for almost as long
on promoting
interoperability between
services and applications on
the Grid. The Global Grid
Forum established a team a
few years ago to formulate
an Open Grid Services
Architecture (OGSA), which
uses interoperable Web
services mechanisms to
provide essential Grid
interoperability features such
as monitoring, lifetime
management, and universal
naming. The resulting
collaboration between GGF,
IETF, OASIS, and W3C has
produced the WS-Resource
Framework (WSRF) and WS-
Notification (WSN) family of
specifications, which form
the basis for a new
generation of Web services
that have essential Grid
interoperability features.

All of this adds up to
good news for the developers
of distributed applications in
service of the e-Science and
e-Business movements. WSRF
and WSN, in combination
with existing Web services
standards like SOAP, WSDL,
UDDI, and WS-Security, make
it possible to develop
applications that have a high
degree of interoperability
without requiring an
enormous amount of
planning and negotiation
with partners that has to be
revisited for every new
application.

How to Host Web Services
The capabilities offered

by Web services are very
exciting for application
developers. For cluster
operators, the most pressing
issue posed by Web services

is probably, "What do I need
to do to support Web service-
based applications on my
cluster?"

Most Web services
require a hosting
environment that consists of
the computer on which it
runs, a web server program,
and a Web services
"container." The container
consists of extensions to the
web server program.
Elements of the container
include support for SOAP
messaging and servlets. An
open-source hosting
environment might consist
of a Linux system, an Apache
web server program, Apache
Axis (for SOAP processing)
and Apache Tomcat (a servlet
container). A commercial
hosting environment might
consist of a Solaris system
running Sun's Java
Application Server Platform.
The Globus Toolkit 4.0
includes a standalone Web
services container that will
host WSRF and WSN services.
There are many other
hosting environment
combinations.

Containers are language-
specific. Web services can be
developed in a variety of
languages, including Java,
C++, Python, and Perl, and
each language has a set of
containers that can be used.
Containers may also be
embedded in standalone
applications; in this scenario,
running the application
starts the container so that
the Web service interfaces
are available while the
application runs.

Configuring a cluster to
support Web services
includes establishing a node
on which the web server and
associated Web services will
run (typically a head node),
and installing the software
for the web server and the
container. Choosing the

software is currently a tricky
business, as the standards
for Web services are still
being established and
different applications may
require containers with
different properties. In most
cases, Web service-based
applications will either
include their own containers
(standalone or embedded
containers) or come with a
list of containers in which
they can be run.

Note that unless the Web
service has been designed to
use the back end nodes on
the cluster, it will only use
the cluster's head node. Web
services that require
significant processing power
should be written to submit
tasks to back end nodes via
the cluster's scheduler or
other tools. The application
developer must explicitly
implement this capability.
The GRAM service in the
Globus Toolkit 4.0 is an
example of a Web service
that can distribute tasks to
back end nodes via a variety
of scheduler interfaces.

The steps for deploying a
Web service differ for
different containers. In most
cases, one can add a new
Web service to an existing
container by installing the
files that implement the
service and then adjusting
the configuration of the
container software to tell it
where the files are. In some
cases, the container must be
shut down and restarted to
add or remove a service. In
others, services can be added
or removed dynamically. It is
important to understand,
however, that most
containers require the
system administrator's
involvement in service
deployment. (Any user can
start up a standalone or
embedded container, of
course, but in this case the

container will have to use a
free port number.)

Most commercial Web
service hosting environments
include tools to monitor the
status of the container and
any Web services that have
been deployed within it. Web
services that support the WS-
ResourceProperties
specification (one of the
WSRF specifications) can be
monitored using their
resource properties
interfaces with tools like
WebMDS, which provides a
web browser interface to
WSRF monitoring data.

Implications for Cluster
Owners

The increasing popularity
of Web services for
distributed application
development has two
fundamental implications for
cluster administrators. First,
distributed applications are
becoming more popular.
Distributed applications have
different use patterns and
requirements from
traditional high-performance
computing (HPC)
applications, so cluster
administrators will see
different demands on their
clusters. Second, Web
services use different
mechanisms to deploy
software applications and
initiate tasks on clusters, so
administrators will see new
kinds of configuration
requests from users and will
need to account for new uses
of their clusters.

With traditional HPC
applications, an application
run uses a single cluster in
isolation to perform tasks on
behalf of a single user. The
application's installation can
be tailored to fit the system
and users are then told how
to run the application on the

cluster. Application runs can
be performed on a scheduled
basis at the convenience of
the system without much
consideration given to the
user's schedule. Distributed
applications break these
conventions in several ways.
A single application run may
use several clusters in
tandem, requiring each
cluster to work with the
others in a prescribed
manner. The application
must be installed on each
cluster in a consistent way,
minimizing system-specific
idiosyncrasies. Application
runs may involve multiple
systems requiring each
system to service application
requests on demand rather
than delaying them
indefinitely until other
processes are completed.
Finally, distributed
applications that follow a
service-oriented design are
often used by many users
simultaneously, leading to
service requests from
different users arriving at the
system in apparently random
order, wreaking havoc with
traditional approaches to
per-user priorities.

Traditional HPC systems
usually require users to log
in to a system and then
launch an application by
submitting a request to the
scheduler or queuing system.
Remote job submission
interfaces follow this model
closely, though they
compress the login and job
launch steps into a single
action. Some accounting and
auditing mechanisms depend
on this model, keeping track
of logins, jobs executed, and
data stored by each user.
Distributed applications
following the Web services
model break this model as
well. Users consume cluster
resources by making service
requests rather than by

logging in and submitting
jobs. These service requests
can be authenticated and
mapped to local users, but
the processes that service the
requests are launched as
daemons or service handlers
rather than as jobs. The data
that results from multiple
service requests may or may
not be attributable to
individual users. Users may
make substantial use of a
cluster's resources without
ever actually logging into the
cluster or seeing a shell
prompt. (Users may not even
be explicitly aware that they
are using the cluster if their
applications aren't designed
to inform them of details at
that level.) Accounting and
auditing systems may need
to be modified to track the
resources used by
authenticated service
requests.

As noted above,
deploying a Web service is
quite different from
deploying a traditional HPC
application. If no existing
container is suitable for
hosting the application, a
new container must be set
up. The container must be
configured to recognize the
new service once it has been
installed. New services will
likely be accompanied by
new users, and most of those
new users will be using the
Web services interfaces
rather than explicitly logging
in to the system. These
users' Grid identities must be
mapped to local system IDs
for authorization and
accounting purposes.

In some cases, users will
deploy their own
applications that have Web
service interfaces. These
applications may have
embedded containers or use
standalone containers that
users can install and launch
themselves on non-standard

port numbers. Cluster
administrators need to be
aware that these services
may be used by people other
than the user who launched
the job. It may become
necessary to adjust or
update usage policies to limit
this kind of use of the
system or to establish new
standards for how
authentication,
authorization, and
accounting are performed in
these cases.

Conclusions
This month's column has

raised a number of issues
about how Web services will
change the traditional use
models for cluster resources.
Some readers will
undoubtedly infer from this
that the increasing use of
Web services is threat that
must be eliminated. That
would be a mistake with
potentially very large
consequences. In truth,
based on the anecdotal
experiences of early Grid
application deployment
projects like Grid3
(www.ivdgl.org/grid3) it
seems likely that service-
oriented applications—such
as those based on Web
services—will lead to
significantly greater use of
clusters (i.e., more business)
than traditional, manually
launched applications. Early
efforts to gear clusters to
become high-power hosting
environments for these types
of applications will position
administrators well in a
service-oriented era.

The challenges are
neither trivial nor
monumental. Commercial
system vendors (Sun, HP,
IBM, Oracle, Microsoft) are
already providing the first
generation of Web service
hosting environments and

management tools, and some
of their customers and
application developers are
already exploring the
possibilities of these new
systems. Early adopters will
find these tools a bit rough
around the edges and lacking
in some of the features
familiar to HPC system
administrators. Over time,
however, the current tools
may well become the basis
for the next status quo, and
those who participate now
will help determine what that
status quo ultimately looks
like.

Globus Toolkit is a registered
trademark held by the
University of Chicago. This
work was supported in part
by the Mathematical,
Information, and
Computational Sciences
Division subprogram of the
Office of Advanced Scientific
Computing Research, Office
of Science, U.S. Department
of Energy, under Contract W-
31-109-ENG-38 and under
Contract DE-AC03-76SF0098
with the University of
California; by the National
Science Foundation; by the
NASA Information Power
Grid program; and by IBM.

Lee Liming is manager of the
Distributed Systems
Laboratory (DSL) of Argonne
National Laboratory, part of
the Globus Alliance.

